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12-5 REACTANCE TRANSFORMATIONS AND
MOEBIUS MAPPINGS

All filter types described thus far represent approximations to the ideal low-pass
brick-wall response shown in Fig. 12-3. With a simple manipulation, however, all
previous results can be applied to a variety of other problems. Assume, for exam-
ple, that in the filter of Fig. 12-17a the inductor L, is replaced by a capacitor C},
and, vice versa, all capacitors C,, C,, C, are replaced by inductors L, L,, L;,
respectively (Fig. 12-19a). Assume furthermore that the new element values satisfy
the relations

,_ 1 1 -
C2 = A‘E; L= AC,- i=1,23 (]2'89)

What will the response of this new filter be?
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Figure 12-19 (a) High-pass filter obtained by transforming the filter of Fig. 12-17a; (b) loss response.
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In the calculation of the original filter response, w enters only through the
reactive immittances jwlL,, joC,, jwC,, and jwC;. In the new filter, thesc immi-
tances are replaced, according to Fig. 12-19a and Eq. (12-89), as follows:

1 —jAL
T DT e ... S TS
jol, Jja'Cy w' :
] 12-90}
I wjdC (
jwC,; = : i=12 3
U ’ﬂjw'L; w’ !

where o’ is the radian frequency variable of the new filter. Hence, in effect, the
variable w has been replaced by the new variable @’ through the relation

Q= — — (12-91)

For example, A = 2 x 10% Then the loss value 0.28 dB, which the original filter
had at its passband limit f, = 10 kHz (Fig. 12-17), will be obtained for the new
filter at

A 2 x 108 104

TPl Pl 12-92
@ w, 2n10% o (12572)

4
or == ;% ~ —0.5066 kHz (12-93)

Since the loss response is an even function of f’, the loss will be the same at
f, 2 +0.5066 kHz. Equation (12-91) also shows that loss values in the original
passband |f| <f, will appear in the range |f'| =f}, for the new filter
(Fig. 12-19b), and vice versa. Thus, the filter obtained through the transformation
described by Egs. (12-90) and (12-91) from a low-pass filter is a high-pass filter.
The frequency values related by the transformation (12-91) can be easily visu-
alized if we plot the w-vs.-’ curve (Fig. 12-20a). Figure 12-20b illustrates
schematicallyt the change in the loss response due to the transformation.

Assume now that a high-pass filter with specified values of w},, w}, a,, and a,
must be designed. The techniques of Secs. 12-2 to 12-4 enable us to design a
low-pass filter from which the final high-pass circuit is obtainable using (12-90)
and (12-91). Hence, we need merely to find the parameters w,, w, of the low-pass
filter and the transformation constant A. The selectivity parameter & of the low-
pass filter satisfies, by (12-91),

ké.wi.’:m fi/ﬂfx?)f (12-94)
Wy - A!st Wy

and is thus known. When w, is chosen arbitrarily (say at w, = 1), the transforma-
tion constant A is given, from (12-92}, by

A= ,w), (12-95)

+ For a Chebyshev filter.
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Figure 12-20 {a) Relation between the low-pass and high-pass frequency variables; (b) the resulting
transformation of the loss response.

We conclude that the high-pass filter design using a low-pass prototype filter
can be carried out in the following steps:

1. From the specified high-pass filter parameters a,, %, f, f5, the selectivity
k= f/f, <1 of the low-pass prototype is found, and w, is chosen.
2. From w,, w, = w, /k, a,, and a,, the low-pass filter is designed.t

+ Note that 2, and %, remain the same for the low-pass and high-pass filters since our transforma-
tion affects only the w axis.
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3. From the elements of the low-pass filter, those of the desired high-pass filter can
be obtained using the relations

1 1
C: e e SRR R I = 1, 2,
AL, w,w,L;
1 1 (12-96)
W e 5 roma s =12
CAC 0,w,C; :

Example 12-6 Design a high-pass filter satisfying the following specifications:

o< 0.1dB for f> 15 kHz
¢ = 40 dB for f < 2.5 kHz

Terminating resistors: 600 Q

Following the design steps outlined above, we find for the low-pass prototype filter the
selectivity parameter

k=9 S5

25 x10° 1
o, fi, Bxig* 6

and, from (12-24), the discrimination parameter

10710 =] -
- ‘/ et & 1:52628 x 1073
Hence, choosing a Chebyshev filter, by (12-71) the degree must satisly

-1
. cosh™* (1/k,)

n> E&si‘m‘”("iﬁT ~ 2.896

Using n = 3 and postulating (for a change)

)= a(f)>a

I, = 1.03156 Iy = 103156
o ST I OO0
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C, = 17.1428 nF Cy = 17.1428 nF
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L, & 55483 mH
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Figure 12-21 (a) Normalized low-pass prototype
f:3] filter; (b} final high-pass filter circuit.
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we get an increased stopband loss of 42.218 dB. Proceeding with the calculation of K(S),
H(S), and the element values, as discussed in Sec. 12-3, we obtain the circuit shown in
Fig. 12-21a. This circuit is both frequency- and impedance-normalized: it is designed with
w,=1and Rg =R, = 1.

Next, the circuit is transformed, element by element, into an impedance-normalized
high-pass filter. Using {12-95), we obtain

A = w,w, = (1)27)(15 x 10°) ~ 9.424778 x 10°
and hence, by (12-96),

. 1 2 ; 1 -
== m 102857 x 107°  and b= yre =0.924728 x 10™*
Finally, impedance denormalization is accomplished by multiplying /, by 600 an¢
dividing ¢} as well as ¢’ by 600. This gives the final circuit shown in Fig. 12-21b.

It is clear that the transformation w = — A/w’ given in (12-91) performs two
functions: (1) it replaces a low-pass frequency response by a high-pass one; (2) it
replaces the element immittances in the low-pass prototype by realizable immit-
tances in the high-pass circuit, as Egs. (12-89) and (12-90) illustrate. Next, con-

sider the transformation
wf —w?

!

w

W= -

(12-97)

This replaces an inductance in the prototype network by an impedance
according to the relation

2 L 1
joL, = —jA + jAL, o' o C + jLie’ (12-98)
1
o - S rA 4] 12-99
where G dolL, L L { )

Clearly, L, becomes a series resonant circuit (Flg 12-22a) in the transformed
network. The resonant frequency is

1

W, = =g = (0 (12-100;
~/ LiC;
Similarly, a capacitor is replaced as suggested by
2 C‘ 1
joC,= —jA (:)1 + jJAC, 0" = + jo'C; (12-101)

JL.‘
The capacitor C; is thus transformed into a parallel resonant circuit (Fig. 12-22b).
The element values are, from (12-101),

1

Li Aﬂ)f Cl'

C, & AC, (12-102)

The resonant frequency is again given by (12-100).
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Figure 12-22 (a) and (b). The transformation of low-pass prototype elements into bandpass filter
impedances; (c) the corresponding transformation of the frequency variable; (d) the effect of the
transformation on the loss response.
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To find the effect of the transformation (12-97) on the frequency response, the
w-vs.~w’ curve can be plotted. The result (Fzg 12-22¢) demonstrates that now the
frequency range -—w,<w<®, is transformed into the range:
—w,, S £ ~w,, and v, <o < w),,. Hence, if the prototype circuit was
low-pass filter, the transformed cn'cmt w:li be a bandpass one. Figure 12-22¢
illustrates the bandpass-filter response obtained. The passband limits o', and @/,
can be obtained from (12-97). As Fig. 12-22¢ shows, w, transforms into —w/, anc
wy,; hence, the latter frequencies are the solutions of the equation
L. ol —%Em'—w§=0 (12-103

@ : low-pass w

_ Hence, w),, and @), satisfy the relations
@ : high-pass

w
' ‘ ' ; I ) ol - T
4 (0" + o) o'~ @) = w'? — L@ ol
0=— (12-104
[0} r_ ! R ﬂ;)? ’ ’ _— 2
Wy, — Wy, = A Wy, Wy, = Wy

In the same way, the stopband limit e, of the low-pa%s filter transforms intc
the high-pass filter stopband limit frequencies —j, and w},. Performing ar
analysis exactly analogous to that giving (12-104) gives the results

w, i B
A

Wy, W, = W] (12-105
As Egs. (12-104) and (12-105) show, if the low-pass filter has a loss « at frequenc;
@, the same loss will be obtained for the bandpass filter at the positive frequencie
w,, and @)}; these frequencies will have a geometric symmetry around w, so tha
', w}, = w3. Hence, the loss response of the bandpass filter will have a geometri
symmetry around ;.
At this stage, we can piece together the design procedure for a bandpass filte
using a low-pass prototype. The design steps are the following:

a)sz a)s: =

1. We check the given bandpass-filter parameters w’,, w,, o, and o, to se
whether (he geometric symmetry condition
W), W, = W, Wy, (12-106

[which follows from Eqs. (12-104) and (12-105)] is met. If not, one of th
parameters can be readjusted to restore symmetry and introduce some salfet
margin. If, for example,
W, W, > Wy, W, (12-107
then w;,, can be lowered to w}, w}, /),
. The selectmty of the low-pass ﬁller prototype can be found from (12-104) an
(12-105):

(2]

katr="Vp2 NNNNNN W - M (12-10¢
w, Alw,,—w,) o, —w,



ECE 580 — Network Theory Frequency Transformation 190
Sec. 12 Temes-Lapatra

From k, «,, and a,, the low-pass prototype filter can be designed. Since in the
design process the degree n is rounded up, k will actually be higher than the
value given by (12-108).

3. To obtain the element values of the bandpass filter from those of the prototype,
the transformation constants A4 and w? are needed. They in turn can be ob-
tained from the limit frequencies of the filters. From (12-108) and (12-106)

wl’

' v ’ f o ’ ;
p2 = Wy, = k(ew}, — w}) W, Wy = Wy, O, (12-109)

where k is the actual (increased) selectivity of the low-pass filter. Keeping, say,
wy, and @}, at their specified values, we obtain a second-degree equation

(@0,)* — klws, — 0}, )y, — @i @i, =0 (12-110)
for w},. Hencet
ok ’ . -
u}PE = ; ((USQ - (Dm) + 4 (wsz e (051) + w;IW;z (12"‘111)
; o, , , ,
while Wy, = —=—1 = @y, — k(w}, — w},) (12-112)
Pz

Next, from (12-104) and (12-105),

P W,
- F ’ '
Wy = Wy Wy — 10

— i i r 7 BRI ; r
= Wy = W, Wy, = W, O,

;
S1

(12-113)

2

Finally, the bandpass-filter-element values can be found from Fig. 12-22gand
b, as well as Eqs. (12-99) and (12-102).

Example 12-7 Design a bandpass filter satisfying the following specifications:
For 482 MHz < f < 5.18 MHz x<02dB
for f< 4.34 MHz and f > 5.66 MHz « =36 dB

Both terminations must be 150 Q.
Since (calculating in megahertz)

Sos S = 249676 > £, fi, = 24.5644

we have to readjust [, to

L*i.s ~ 4.74216 MHz
[
By (12-108), the minimum value of the low-pass filter selectivity is
oo L =S 043784

L4 - 25 0.3317
TR ¥ Rkt

t The solution containing the negative sign before the squars root yields ~u,.
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ECE 580 — Network Theory

When an elliptic-filter prototype is chosen from Table 12-8, the filter with & = 21° may
be selected. This filter has a maximum passband reflection factor p.,,, = 20 percent, corre-
sponding to
max — P

Pmnx
@, = —10 log (1 — pha) = 0.17729 dB

x, = —10 log -;2 - 10log =

max

where Egs. (6-16) to (6-20) have been utilized. Since for this filter «, <0.2 dB,
o, = 36.14 dB > 36 dB, and k = 1/Q, = 0.35837 > 0.3317, it meets all requirements. The
circuit diagram is shown in Fig. 12-23a. The element values are obtained from Table 12-8
as C, = 1.1215, C, = 00925, L, = 10593, with a normalization such that w, = L.
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Figure 12-23 (¢) Normalized low-pass elliptic filter, used as a prototype; (b) transformed-
impedance-normalized-bandpass filter (element values in nanofarads and nanohenrys); (c) final band-

pass filter (element values in nanofarads and microhenrys).

v
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Keeping f;, and f;, unchanged and working in terms of frather than w, we see that
Eq. (12-111) gives the readjusted passband limit

k ki " ; ¢
.{:Dz = i(f’sz —‘f’lt) + \/_4_(.){’51 —f:!z)z +f-ﬂf82 ~ 5.198365 MHz
and from (12-112)
Loy = .f.?}rf” ~ 4.7254 MHz
jPZ

We note that the original specifications are met with some safety margin.
The transformation constants can be found from (12-113):

Wy Q. 27904
oy, —wy,  2n(fs, —fa) " (27)(1.32 x 10%)
A=0336444 x 10°° o} = 2r)¥f,, f1, > 969.76364 x 1012

A=

Hence, by Fig. 12-22b and Egq. (12-102), C, becomes the parallel combination of a
capacitance

Cy = AC, = 0.37732 uF
and an inductance
i
L e 2.7329 nH
Similarly, L, is replaced by a series resonant circuit. The element values are, by (12-99),
Ly = AL, ~3564nH Cp=- ~, ~ 28933 nF
z L ey

Finally, C, is replaced by a parallel tuned circuit with element values
AC, = 31.121 nF and 1/w}i AC; ~ 33.134 nH (Fig. 12-23b).

The circuit of Fig. 12-23b is still impedance-normalized, since the prototype fiiter has
1-Q terminations. Furthermore, the element values (although positive and thus theor-

L, Cl 2
el GO
L,
O C,
y
et OO Ny — OBOG0
| . { c, c, . i

_.__"- _"__ g:::: 12-24 A network cquiv-



ECE 580 — Network Theory Frequency Transformation 193

Sec. 12 Temes-Lapatra

etically realizable) are too widely spread for easy practical construction; the ratios L3/L)
and C} /CY are over 130.

It is known from experience that this phenomencn is often encountered for narrow-
band bandpass filters, i.e, for filters where @), — ), < /@), W, , as is the case here. To
remedy the situation, the circuit equivalence shown in Fig. 12-24 may be used. The circuits
shown are cquivalent if the following relations hold:

1~y 1—:z
L} s Ll 5,,,} £ = sz 3
(12-114)
’ 14y ; 1+z
L2 - Ll —2--}- C; == sz 2
& L;\2 C, L
al14+ 8422 _a&12
where X ( + C, + Lx) Cxla
(12-115)

y & 1._4L2 z & 1__f_€i
. xL; xC;
For the circuit of Fig. 12-23b, C, /C, = L, /L, and hence (12-115) gives

x = 440291 y=z=015102

Hence, using (12-114) and denormalizing the impedance level, ie, multiplying all induc-
tances and dividing all capacitances by Ry = 150 Q, gives the element values indicated in
Fig. 12-23¢. The spread of element values is now less than 7.

Next, consider the frequency transformation

wMAwfmo)'z (12-116)
Proceeding as we did before with (12-97), we can readily derive the corresponding
element transformations (Fig. 12-25a and b) and the w-vs.-’ curve (Fig. 12-25¢).
The latter makes it obvious that Eq. (12-116) transforms a low-pass filter into a
bandstop one. Figure 12-25d illustrates (for a Chebyshev filter) the resulting map-
ping of the loss response.

Since the analysis of this transformation is a close parallel of that of the
lowpass-to-bandpass transformation, the detailed calculations are left to the
reader as an exercise (see Probs. 12-31 to 12-34).

A review of Egs. (12-91), (12-97), and (12-116) reveals that each of these
relations replaces w by a reactance function f{w'}) of &'. This makes 1t possible to
replace the immittances wL; and wC; of the lowpass prototype filter, one by one,
by realizable reactances to obtain the final high-pass (or bandpass or bandstop)
filter. Clearly this process can be generalized to more complicated reactance func-
tions; however, the symmetry conditions which result become very complicated

Figure 12-25 (a) and (b) The transformation of low-pass prototype elements into bandstop filter
impedances; {c) the transformation of the frequency variable; {d) the effect of the transformation on
the loss response.
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